推广 热搜: 英语  数学  小学  初中  高中  化学 

2021年上海上海师范大学附中高中二年级上期末数学考试试题

   日期:2025-06-24     来源:www.cyuankj.com    浏览:323    
文章简介:第一学期上大附中期末考试 高二     数学试题 1、 填空题(共36分) 1.  __________. 2. 双曲线的渐近线方程是__________. __________ 3.  已知矩阵,则__________.   4.已知,,...

第一学期上大附中期末考试

高二     数学试题

1、 填空题(共36分)

1.  __________.

2. 双曲线的渐近线方程是__________.

__________

3.  已知矩阵,则__________.

 

4.已知,若,则实数__________.

__________

5. 行列式中,第2行第1列元素的代数余子式的值为,则实数__________.

6. 已知直线平行,则k的值是__________.

 

7.若向量的夹角为,则__________.

8.已知实数满足条件,则的最大值为__________.

9.曲线C的方程是,则曲线C被坐标轴所截的线段长__________.

10. 椭圆上一点到焦点的距离为4,为原点,的中点,则__________.

11.设是曲线上的点,,则

的最大值为__________.

12、已知各项均为正数的数列满足),且,则首项所大概取值中最大值为__________.

 

2、 选择题(每题4分,共16分)

13. 已知复数为虚数单位),在复平面内,对应的点在(    )

A.第一象限           B.第二象限          C.第三象限             D.第四象限

14. 在平行四边形ABCD中,下列结论中错误的是(    )

(A)(B)(C)(D)

15.已知,则对应的点的轨迹为(    )

椭圆 双曲线 抛物线 线段

16.在平面直角坐标系中,点A、点B到直线l的距离分别为1、2,则符合条件的直线l的条数为(    )

 、1 ; 、2  ;  、3;  、4.

 

3、 解答卷(共48分)

17.(8分)已知复数.

(1)比较的大小;

(2)判断复数在复平面上所对应的点与圆的地方关系.

 

 

18.(8分)已知

(1)当时,求直线AB

(2)当,求直线AB的倾斜角α的取值范围.

 

 

19.(8分)已知关于的方程:R表示圆.

的取值范围;

若该圆与直线:相交于两点,且=,求实数的值.

 

 

 

 

 

 

 

20、(10分)已知点依次为双曲线的左右焦点,

(1)若,以为方向向量的直线经过,求的距离;

(2)若双曲线上存在点,使得,求实数的取值范围.

 

 

 

21、(14分)如图,直线与抛物线(常数)相交于不一样的两点,且为定值),线段的中点为,与直线平行的切线的切点为(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).

表示出点、点的坐标,并证明垂直于轴;

(2)求的面积,证明的面积与无关,只与有关;

(3)小明所在的兴趣小组完成上面两个小题后,小明连,再作与平行的切线,切点分别为,小明立刻写出了的面积,由此小明求出了直线与抛物线围成的面积,你觉得小明能做到吗?请你说出理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

第一学期上大附中期末考试

高二     数学试题

 

1、 填空题(共36分)

1.  __________ 

2. 双曲线的渐近线方程是__________

__________

3.  已知矩阵,则AB=____________________.

 

4.已知,若,则实数_______.-2

__________

5. 行列式中,第2行第1列元素的代数余子式的值为,则实数__________;

6. 已知直线平行,则k的值是__________. 3或5

 

7.若向量的夹角为,则__________

8.已知实数满足条件,则的最大值为_________

9.曲线C的方程是,则曲线C被坐标轴所截的线段长d=__13

10. 椭圆上一点到焦点的距离为4,为原点,的中点,则__________

11.设是曲线上的点,,则

的最大值为__________

12、已知各项均为正数的数列满足),且,则首项所大概取值中最大值为______32____________

 

2、 选择题(每题4分,共16分)

13. 已知复数为虚数单位),在复平面内,对应的点在( B  )

A.第一象限           B.第二象限          C.第三象限             D.第四象限

14. 在平行四边形ABCD中,下列结论中错误的是(  C    )

(A)(B)(C)(D)

15.已知,则对应的点的轨迹为( D )

椭圆 双曲线 抛物线 线段

16.在平面直角坐标系中,点A、点B到直线l的距离分别为1、2,则符合条件的直线l的条数为 B

 、1 ; 、2  ;  、3;  、4.

 

 

3、 解答卷(共48分)

17.(8分)已知复数.

(1)比较的大小;

(2)判断复数在复平面上所对应的点与圆的地方关系.

(1)<

(2)圆内

18.(8分)已知

(1)当m=2时,求直线AB

(2)当m[﹣﹣1,-1),求直线AB的倾斜角α的取值范围.

(1)

(2)

 

19.(8分)已知关于的方程:R表示圆.

的取值范围;

若该圆与直线:相交于两点,且=,求实数的值.

m<5(4分)

(2)m=1(6分)

20、(10分)已知点依次为双曲线的左右焦点,

(1)若,以为方向向量的直线经过,求的距离;

(2)若双曲线上存在点,使得,求实数的取值范围.

解:的方程是:...................2分

的距离为.....................2分

,则代入

   ①.....................2分

在双曲线上      ②

 

 ① ,②  可得

 ....................................3分

    ..............................................1分

 

21、(14分)如图,直线与抛物线(常数)相交于不一样的两点,且为定值),线段的中点为,与直线平行的切线的切点为(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).

表示出点、点的坐标,并证明垂直于轴;

(2)求的面积,证明的面积与无关,只与有关;

(3)小明所在的兴趣小组完成上面两个小题后,小明连,再作与平行的切线,切点分别为,小明立刻写出了的面积,由此小明求出了直线与抛物线围成的面积,你觉得小明能做到吗?请你说出理由.

 

 

 

21. 解:(1)由,得

,设切线方程为,由,得,切点的横坐标为,得

因为的横坐标相同,垂直于轴. 

(2)

的面积与无关,只与有关. 

(本小题也可以求,切点到直线的距离,相应给分)

(3)由(1)知垂直于轴,,由(2)可得的面积只与有关,将中的换成,可得

,按上面架构三角形的办法,无限的进行下去,可以将抛物线与线段所围成的封闭图形的面积,看成无穷多个三角形的面积的和,即数列的无穷项和,此数列公比为

所以封闭图形的面积

 

 
打赏
 
更多>热门阅读

推荐图文
今日推荐
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报